Wednesday, March 7, 2012

Unraveling biological networks: Biological network motif discovery algorithms

ScienceDaily (Mar. 5, 2012) ? A new approach to disentangling the complexities of biological networks, such as the way in which proteins interact in our body's cells has been developed by researchers in China. The team's algorithm could allow biologists and biomedical researchers to unravel new clues about how cells work and what goes awry with such networks in various diseases, such as Alzheimer's disease and cancer.

We find networks everywhere in technology, in nature, in our bodies. They are ubiquitous in countless fields of research from electronic circuitry to social networks from transportation systems to biological systems. Researchers have demonstrated that although networks may superficially be very disparate in nature they nevertheless share many global properties, such as "small world" and "scale free" characteristics. This means that understanding one kind of network can help us understand another.

However, to dig deeper still into the universal characteristics of networks requires us to understand the basic structural elements present in a particular -- the so-called network "motifs." Motifs are patterns of interconnections between the nodes in a network, whether transistors, neurons Facebook users, or in molecular biology, proteins. Motifs that occur in significantly larger numbers in real networks than in randomised networks can be used to characterise local features of even the most complex networks. With high-throughput analytical techniques, molecular biologists are beginning to uncover network motifs in protein systems, and likewise in metabolism, the brain, the spread of pathogens and many other areas of interest.

Computer scientists Guimin Qin and Lin Gao of Xidian University in Shaanxi, China, have devised an efficient algorithm for detecting motifs in protein networks. The algorithm first searches for specific non-tree-like sub-structures in a network that are not so commonly found in random networks. It then classifies these sub-structures and clusters them hierarchically to reveal the presence of recurring motifs in the network. The team has applied the algorithm to a network of protein-protein interaction (PPI) for the well-studied bacterium Escherichia coli and the yeast Saccharomyces cerevisiae.

"Our experimental results show that the algorithm can efficiently discover motifs, which are consistent with current biology knowledge," the team says. Importantly, however, the approach has also revealed several novel motifs previously unrecognised. "Our algorithm can detect several consensus motifs with a given size, which may help biologists go further into cellular process," the team adds.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Inderscience Publishers, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Guimin Qin, Lin Gao. An algorithm for network motif discovery in biological networks. International Journal of Data Mining and Bioinformatics, 2012; 6 (1): 1 DOI: 10.1504/IJDMB.2012.045533

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Source: http://www.sciencedaily.com/releases/2012/03/120305132538.htm

republican debate tonight tinker tailor soldier spy rich forever rick ross project runway all stars elin nordegren tangled ever after kansas state

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.